2
 SAMPIE PAPPR [SOUED

SECTION-A

Multiple Choice Questions

Each question carries 1 mark.

1. If $\left[\begin{array}{ll}m & n\end{array}\right]\left[\begin{array}{l}m \\ n\end{array}\right]=[25]$ and $m<n$, then (m, n) is equal to
(a) $(2,3)$
(b) $(3,4)$
(c) $(4,3)$
(d) None of these
2. The area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq. units. The value of k will be
(a) 9
(b) ± 3
(c) -9
(d) 6
3. The magnitude of vector $6 \hat{i}+2 \hat{j}+3 \hat{k}$ is
(a) 5
(b) 7
(c) 12
(d) 1
4. The value of a if the function $f(x)$ defined by $f(x)=\left\{\begin{array}{cl}2 x-1, & x<2 \\ a, & x=2 \\ x+1, & x>2\end{array}\right.$ is continuous at $x=2$ is
(a) 3
(b) -3
(c) 0
(d) 4
5. If $f^{\prime}(x)=-\frac{1}{x^{2}}$, then $f(x)$ is
(a) $-\frac{1}{x}+C$
(b) $\frac{1}{x}+C$
(c) $\log x+C$
(d) $\log \left(\frac{1}{x}\right)+C$
6. The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d y}{d x}\right)$ is
(a) 1
(b) 2
(c) 3
(d) not defined
7. Which of the following statements is correct?
(a) Every LPP admits an optimal selection.
(b) A LPP admits unique optimal solution.
(c) If a LPP admits two optimal solutions then it has infinite solutions.
(d) The set of all feasible solutions of a LPP is not a convex set.
8. The projection of vector $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ along $\vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ is
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) 2
(d) $\sqrt{2}$
9. The value of $\int_{-\pi / 2}^{\pi / 2}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$ is
(a) 0
(b) 2
(c) π
(d) 1
10. Which is true about matrix multiplication?
(a) It is commutative
(b) It is associative
(c) Both (a) and (b)
(d) None of these
11. The feasible region for an LPP is shown below:

Let $Z=3 x-4 y$ be the objective function. Minimum of Z occurs at

(a) $(0,0)$
(b) $(0,8)$
(c) $(5,0)$
(d) $(4,10)$
12. Which one of the following is correct?
(a) Skew - symmetric matrix of odd order is non-singular.
(b) Skew - symmetric matrix of odd order is singular.
(c) Skew - symmetric matrix of even order is always singular.
(d) None of these
13. If A is a square matrix of order 3 such that $|A|=2$, then the value of $\mid \operatorname{adj} \operatorname{adj} A) \mid$ is
(a) -16
(b) 16
(c) 0
(d) 2
14. If two events are independent, then
(a) they must be mutually exclusive.
(b) the sum of their probabilities must be equal to 1.
(c) Both (a) and (b) are correct.
(d) None of the above is correct.
15. The integrating factor of differential equation $\cos x \frac{d y}{d x}+y \sin x=1$ is
(a) $\cos x$
(b) $\tan x$
(c) $\sec x$
(d) $\sin x$
16. If $y=\cos ^{-1} x$, then $\left(1-x^{2}\right) y_{2}$ is equal to
(a) $x y_{1}$
(b) $-x y_{1}$
(c) x
(d) $-x$
17. If $|\vec{a}|=8,|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$, then value of $\vec{a} \cdot \vec{b}$ is
(a) $6 \sqrt{3}$
(b) $8 \sqrt{3}$
(c) $12 \sqrt{3}$
(d) None of these
18. If a line makes angles $\frac{\pi}{2}, \frac{3 \pi}{4}$, and $\frac{\pi}{4}$ with x, y, z axes, respectively, then the direction cosines are
(a) $\pm(1,1,1)$
(b) $\pm\left(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(c) $\pm\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
(d) $\pm\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$

Assertion-Reason Based Questions

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
19. Assertion (A) : Domain of $f(x)=\sin ^{-1} x+\cos x$ is $[-1,1]$.

Reason (R) : Domain of a function is the set of all possible values for which function will be defined.
20. Assertion (A) : The angle between the lines whose direction cosines are $\frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{-\sqrt{3}}{2} ; \frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}$ is 120°.
Reason (R): The angle between two lines whose direction ratios are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} is given by $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$.

SECTION-B

(This section comprises of very short answer type questions (VSA) of 2 marks each.)
21. Find the value of $\sin ^{-1}\left(\sin \left(\frac{43 \pi}{5}\right)\right)$.

OR

Consider $f: \mathbb{R}_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible.
22. If $A=\left|\begin{array}{rrr}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right|$, find $\left(A^{\prime}\right)^{-1}$.
23. Find the area of the parallelogram whose one side and a diagonal are represented by coinitial vectors $i-j+k$ and $4 i+5 k$ respectively.

OR

Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.
24. If $y=\log \left(\cos e^{x}\right)$ then find $\frac{d y}{d x}$.
25. Find a unit vector in the direction opposite to - $\frac{3}{4}$

SECTION-C

(This section comprises of short answer type questions (SA) of 3 marks each.)
26. Find: $\int \frac{x^{2}+1}{\left(x^{2}+2\right)\left(x^{2}+3\right)} d x$
27. A refrigerator box contains 2 milk chocolates and 4 dark chocolates. Two chocolates are drawn at random. Find the probability distribution of the number of milk chocolates. What is the most likely outcome?

OR
Given that E and F are events such that $P(E)=0.8, P(F)=0.7, P(E \cap F)=0.6$. Find $P(\bar{E} \mid \bar{F})$.
28. Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x$

> OR

29. Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$, subject to the initial condition $v_{v}(0)=0$.

OR

Solve the differential equation $y e^{x / y} d x=\left(x e^{x / y}+y^{2}\right) d y(y \neq 0)$.
30. are as shown below

Answer each of the following.
(i) Let $Z=400 x+300 y$ be the objective function. Find the maximum and minimum value of Z and also the corresponding points at which the maximum and minimum value occurs.
(ii) Let $Z=p x+q y$, where $p, q>0$ be the objective function. Find the condition on p and q so that maximum value of Z occurs at $C(40,160)$ and $D(20,180)$. Also mention the number of optimal solution in this case.
31. Evaluate: $\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x$

SECTION-D

(This section comprises of long answer type questions (LA) of 5 marks each.)
32. Find the area of the region
$\left.i(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
33. Show that the relation R on the set Z of all integers, given by $R=\|(a, b): 2$ divides $(a-b) \|$ is an equivalence relation.

OR

Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $(a, b),(c, d)$ in $A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class $[(2,5)]$.
34. Find the vector and cartesian equations of the line passing through the point $(2,1,3)$ and perpendicular to the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$.

OR
Show that the lines $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ intersect. Also find their point of intersection.
35. Evaluate the product $A B$, where

$$
\left.A=\left\lvert\, \begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right.\right] \text { and } B=\left|\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right|
$$

Hence solve the system of linear equations

$$
\begin{aligned}
& x-y=3 \\
& 2 x+3 y+4 z=17 \\
& y+2 z=7
\end{aligned}
$$

SECTION-E

(This section comprises of 3 case-Study/passage-based questions of 4 marks each. First two case study questions have three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.)
36. Case-Study 1: Read the following passage and answer the questions given below.

The total cost $C(x)$ in rupees, associated with the production of x unit by a factory is given by
$C(x)=0.005 x^{2}-m x+5000,0 \leq x \leq 15$, where m is a constant.
(i) Is this function differentiable in $(0,15)$?
(ii) If 5 is the critical point of the function, then find the value of m.
(iii) Find the interval in which function is strictly increasing/decreasing.

OR

Find the points of local maxima/minima, in the interval $(0,15)$ as well as the point of absolute maxima/minima in the interval [0, 15]. Also find local maxima/local minima and the absolute maximum/absolute minimum values of the function.
37. Case-Study 2: Read the following passage and answer the questions given below In an elliptical sport field the authority wants to design a rectangular soccer field with maximum possible area. The sport field is given by $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{4^{2}}=1$.
(i) If length and breadth of rectangular field be $2 x$ and $2 y$ respectively, then find the area function in terms of x.

(ii) Find the critical point of the function.
(iii) Use First Derivative Test to find the length $2 x$ and $2 y$ of the shocker field that maximize the area.

OR

Use Second Derivative Test to find the length $2 x$ and $2 y$ of the soccer field that maximise its area.
38. Case-Study 3: Read the following passage and answer the questions given below. In a village there are three mohallas A, B and C. In $A, 60 \%$ farmers believe in new technology of agriculture, while in B, 70% and in C, 80%. A farmer is selected at random from village.

(i) Find the total probability that a farmer believe in new technology of agriculture
(in) District agriculture officer selects a farmer at random in village and he found that selected farmer believe in new technology of agriculture. Find the probability that the farmer belongs mohalla B.

